Gene expression data analysis using closed item set mining for labeled data.

نویسندگان

  • Ana Rotter
  • Petra Kralj Novak
  • Spela Baebler
  • Natasa Toplak
  • Andrej Blejec
  • Nada Lavrac
  • Kristina Gruden
چکیده

This article presents an approach to microarray data analysis using discretised expression values in combination with a methodology of closed item set mining for class labeled data (RelSets). A statistical 2 x 2 factorial design analysis was run in parallel. The approach was validated on two independent sets of two-color microarray experiments using potato plants. Our results demonstrate that the two different analytical procedures, applied on the same data, are adequate for solving two different biological questions being asked. Statistical analysis is appropriate if an overview of the consequences of treatments and their interaction terms on the studied system is needed. If, on the other hand, a list of genes whose expression (upregulation or downregulation) differentiates between classes of data is required, the use of the RelSets algorithm is preferred. The used algorithms are freely available upon request to the authors.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Optimization Of Intersecting Algorithm For Transactions Of Closed Frequent Item Sets In Data Mining

Data mining is the computer-assisted process of information analysis. Mining frequent itemsets is a fundamental task in data mining. Unfortunately the number of frequent itemsets describing the data is often too large to comprehend. This problem has been attacked by condensed representations of frequent itemsets that are sub collections of frequent itemsets containing only the frequent itemsets...

متن کامل

Concurrent Edge Prevision and Rear Edge Pruning Approach for Frequent Closed Itemset Mining

Past observations have shown that a frequent item set mining algorithm are purported to mine the closed ones because the finish provides a compact and a whole progress set and higher potency. Anyhow, the newest closed item set mining algorithms works with candidate maintenance combined with check paradigm that is pricey in runtime yet as space usage when support threshold is a smaller amount or...

متن کامل

Using a Data Mining Tool and FP-Growth Algorithm Application for Extraction of the Rules in two Different Dataset (TECHNICAL NOTE)

In this paper, we want to improve association rules in order to be used in recommenders. Recommender systems present a method to create the personalized offers. One of the most important types of recommender systems is the collaborative filtering that deals with data mining in user information and offering them the appropriate item. Among the data mining methods, finding frequent item sets and ...

متن کامل

Generating Frequent Closed Item Sets Based on Zero-suppressed BDDs

(Abstract) Frequent item set mining is one of the fundamental techniques for knowledge discovery and data mining. In the last decade, a number of efficient algorithms for frequent item set mining have been presented, but most of them focused on just enumerating the item set patterns which satisfy the given conditions, and it was a different matter how to store and index the result of patterns f...

متن کامل

Frequent item set mining

Frequent item set mining is one of the best known and most popular data mining methods. Originally developed for market basket analysis, it is used nowadays for almost any task that requires discovering regularities between (nominal) variables. This paper provides an overview of the foundations of frequent item set mining, starting from a definition of the basic notions and the core task. It co...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Omics : a journal of integrative biology

دوره 14 2  شماره 

صفحات  -

تاریخ انتشار 2010